
Microprocessors and Microcontrollers (EE-231)

Main Objectives

- Hardware Specs of 8086/8088
 - ➢Pin Descriptions
 - ➢Clock Generation
 - ➢ Buffering and Latching

8086 Pin Specification

8086 vs 8088

Differences between 8086 and 8088:

• Data bus size is different.

8086 is a 16 bit microprocessor with a 16 bit data bus and the 8088 is a 16 bit microprocessor with an 8 bit data bus.

- Control signal M/IO (8086) IO/M (8088)
- Hardware Difference Pin 34

on 8088 is: SSO Pin (8088) while on 8086 is: BHE/S7 pin (8086)

Power Requirements

Both Processors require +5.0V with a supply voltage tolerance of $\pm 10\%$.

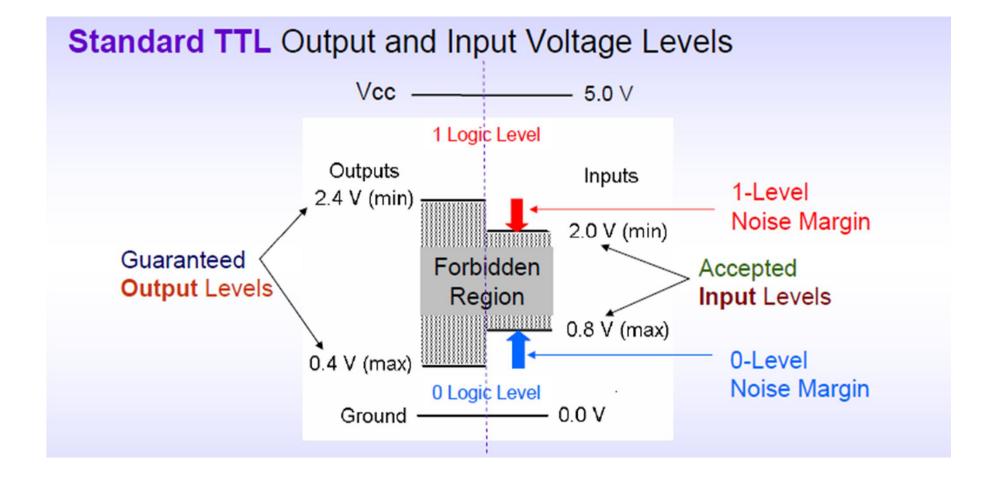
8086 draws a maximum current supply of 360mA

8088 draws a maximum current supply of 340mA

Ambient temperature for use is $32^{\circ}F - 180^{\circ}F$

There is also a CMOS version, which requires a very low supply current and has an extended temperature range. E.g. 80C88 and 80C86: Current = 10mA, Temp = -40° F to $+225^{\circ}$ F

DC Characteristics and Fan Out


- It is essential to examine the DC characteristics of any devices involved in a microprocessor design, before connecting anything on the microprocessors pins.
- Fan-Out of a device is the maximum number of similar devices that can be connected on the output of that device without any problems.
- The Fan-Out is limited by the current sink of the device
- The Fan-Out is also limited by the noise immunity.
- noise immunity : difference between logic 0 output voltage and logic 0 input voltage levels 0.35V(0.8-0.45) or 350 mV
- reduced noise immunity may result in problems : long wire connection, too many load

Input Characteristics of the 8086/8088					
Logic	Voltage	Current			
0	$V_{ILmax} = 0.8 V$	I _{ILmax} = 10 uA			
1	V_{IHmin} = 2.0 V	I _{IHmax} = 10 uA			

Output (Output Characteristics of the 8086/8088					
Logic	Voltage	Current				
0	V_{OLmax} = 0.45 V	I _{OLmax} = 2.0 mA				
1	V_{OHmin} = 2.4 V	I _{OHmax} = -400 uA				

Recommended Fan-Out of the 8086/8088						
Family	I _{SINK}		Fan-Out			
TTL (74)	-1.6 mA	40 uA	1			
TTL (74LS)	-0.4 mA	20 uA	5			
TTL (74ALS)	-0.1 mA	20 uA	10			
TTL (74F)	-0.5 mA	25 uA	10			
CMOS (74HC)	-10 uA	10 uA	10			
CMOS (CD4)	-10 uA	10 uA	10			
NMOS	-10 uA	10 uA	10			

Voltage Levels in TTL

Pin Connections

- AD7-AD0 : address/data bus(multiplexed)
 - It contains memory address or I/O port no when ALE = 1
 - It contains data when ALE = 0
 - It is in high-impedance state during a hold acknowledge
- A15-A8 : 8088 address bus
 - It is in high-impedance state during a hold acknowledge
- AD15-AD8 : 8086 address/data bus(multiplexed)
 - It contains memory address bits A15-A8 when ALE = 1
 - It contains data bits D15-D8 when ALE = 0
 - It is in high-impedance state during a hold acknowledge

Pin Connections

A19/S6 – A13/S3:

Address/Status bus bits are multiplexed to provide address signals A19-A16 and status bits S6-S3.

S6 – always remains 0

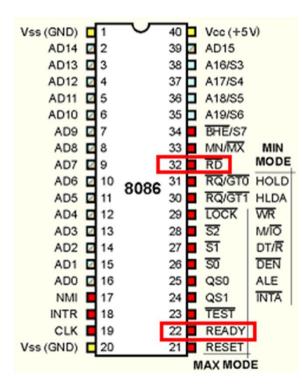
S5 – indicates the condition of the interrupt flag (IF)

S4 and S3 – Indicate the segment being accessed during current bus cycle.

S 4	S3	Function
0	0	Extra segment
0	1	Stack segment
1	0	Code or no segment
1	1	Data segment

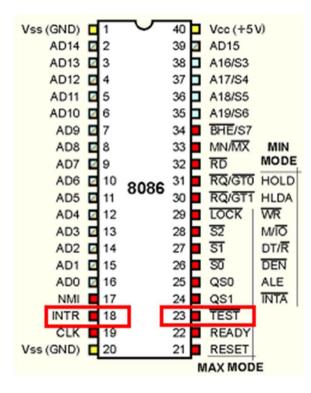
Vss	(GND)		1	\sim	40	ь	Vcc (+5	v
	AD14	Z	2		39	Z	AD15	
	AD13		3		38	Þ	A16/S3	
	AD12		4		37	Þ	A17/S4	
	AD11	Z	5		36	Þ	A18/S5	
	AD10		6		35	Þ	A19/S6	
	AD9		7		34	Þ	BHE/S7	
	AD8	Z	8		33		MN/MX	MIN
	AD7	Z	9		32		RD	MODE
	AD6	Z	10	8086	31		RQ/GT0	HOLD
	AD5	Z	11	0000	30		RQ/GT1	HLDA
	AD4	Z	12		29		LOCK	WR
	AD3	Z	13		28		<u>52</u>	M/IO
	AD2	Z	14		27		<u>S1</u>	DT/R
	AD1	Z	15		26		<u>50</u>	DEN
	AD0	Z	16		25		QS0	ALE
	NMI		17		24		QS1	INTA
	INTR		18		23		TEST	
	CLK		19		22		READY	
Vss	(GND)		20		21		RESET	
						N	IAX MOD	E

Pin Connections


RD:

When this **read signal** pin is at logic 0, the data bus is receptive to data from memory or I/O devices.

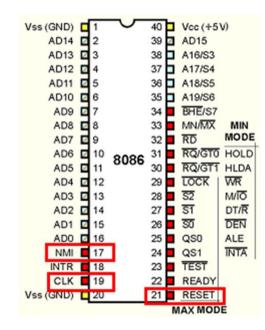
READY:


This pin is used to enforce a waiting state.

READY pin at 0 – the microprocessor goes into idle state. READY pin at 1 – the microprocessor does normal operation.

INTR:

Interrupt request pin is used to request a hardware interrupt. If INTR is held at high when IF =1, the processor goes into the interrupt acknowledgement cycle. INTA becomes active when interrupt is being serviced.



TEST:

Test pin is an input that is tested by the **WAIT** instruction. If the test pin is at logic 0 the WAIT instruction functions as NOP. If test is a logic 1, the WAIT instruction wait for TEST to become logic 0. Commonly used with 8087 numeric coprocessor connections.

NMI:

Non-maskable interrupt input is similar to INTR expect that the NMI interrupt does not check IF or priority. Use Interrupt Vector 2.

RESET:

If this **reset** pin is held high for 4 clock cycles the microprocessor resets. When 8086 or 8088 is reset it begins execution at memory location FFFF0H and clears the IF.

CLK:

The clock pin is used to connect a clock generator

		_		_			_
Vss (GND)		1	\sim	40	Þ	Vcc (+5	V)
AD14	Z	2	120	39	Z	AD15	_
AD13	Z	3		38	Þ	A16/S3	
AD12		4		37	Þ	A17/S4	
AD11		5		36	Þ	A18/S5	
AD10		6		35	Þ	A19/S6	
AD9		7		34		BHE/S7	
AD8	Z	8		33		MN/MX	MIN
AD7	Z	9		32		RD	MODE
AD6	Z	10	8086	31		RQ/GT0	HOLD
AD5	Z	11	0000	30		RQ/GT1	HLDA
AD4		12		29		LOCK	WR
AD3	Z	13		28		<u>\$2</u>	M/IO
AD2	Z	14		27		<u>S1</u>	DT/R
AD1	Z	15		26		<u>50</u>	DEN
ADO		16		25		QS0	ALE
NMI		17		24		QS1	INTA
INTR		18		23		TEST	
CLK		19		22		READY	
Vss (GND)		20		21		RESET	
					N	IAX MOD	E

Vcc:

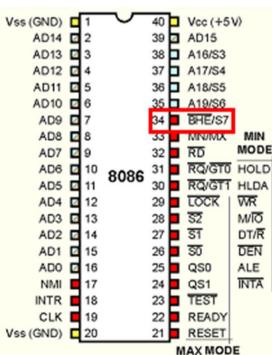
The power supply. +5V should be

connected to this pin.

GND:

The ground connection for the microprocessor.

MN/MX:


The **minimum/maximum mode** pin selects the mode for the processor. To select minimum mode processor should be connected directly to +5.0V and to select maximum mode processor should be connected directly to GND.

BHE/S7:

The **bus high enable** pin is used in the 8086 to enable the Most significant data bus bits (D8-D15) during a read or write operation.

Since these data bits are not in 8088, therefore this pin is not found in 8088.

The state of S7 is always 1

Minimum Mode Pins

IO/M

This pin indicates whether the address bus contains a memory address or an I/O port address.

WR:

The **write line** is a used when the microprocessor is writing data to memory and the memory bus contains a valid address.

Vss (GND)	1	$\overline{}$	40	Vcc (+5	SV)
AD14	2		39	AD15	
AD13 🛛	3		38	A16/S3	
AD12	4		37	A17/S4	
AD11 🛛	5		36	A18/S5	
AD10 🖬	6		35	A19/S6	
AD9 🗹	7		34	BHE/S7	
AD8 🔽	8		33	MN/MX	
AD7 🗹	9		32	RD	MODE
AD6 🛛	10	8086	31	RQ/GT	HOLD
AD5 🛛	11	0000	30	RQ/GT	HLDA
AD4 🗹	12	5	29	LOCK	WR
AD3 🖬	13		28	S2	M/IO
AD2	14		27	S1	DT/R
AD1 🛛	15		26	S0	DEN
ADO 🛛	16		25	QS0	ALE
NMI	17		24	QS1	INTA
INTR	18		23	TEST	
CLK			22	READY	
Vss (GND)	20		21	RESET	+
				MAX MOI	DE

INTA:

Interrupt acknowledgement signals is a response to INTR input pin. This is used when the interrupt vector is placed on the address bus by the microprocessor.

ALE:

Address Latch enable shows whether the multiplexed AD lines carry address or data.

DT/\overline{R} :

Data transmit/receive shows that the microprocessor data bus is transmitting(1) or receiving(0) data. This is used to control buffers.

DEN:

Data Enable bus activates external data bus buffers.

HOLD:

HOLD pin is used to input request DMA. Hold set to 1 microprocessor gives up control of buses to DMA controller.

SS0:

This is equivalent **S0** in the maximum mode pins.

IO/M, DT/R and SSO are used to represent the current status of the microprocessor.

10/M	DT/R	SS0	Function
0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Interrupt acknowledge Memory read Memory write Halt Opcode fetch I/O read I/O write Passive

Maximum Mode Pins

$\overline{S2}$, $\overline{S1}$ and $\overline{S0}$:

These signal bits indicate the function of the current bus cycle in maximum mode.

<u>S2</u>	<u>S1</u>	S0	Function
0 0 0 1 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0 1	Interrupt acknowledge I/O read I/O write Halt Opcode fetch Memory read Memory write Passive

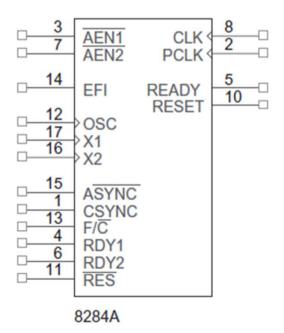
Maximum Mode Pins

RO/GT1 and R0/GTO:

Requests/grants pins request direct memory access during maximum mode operation.

LOCK:

Lock output is used to lock peripherals off the system.


QS0 and QS1:

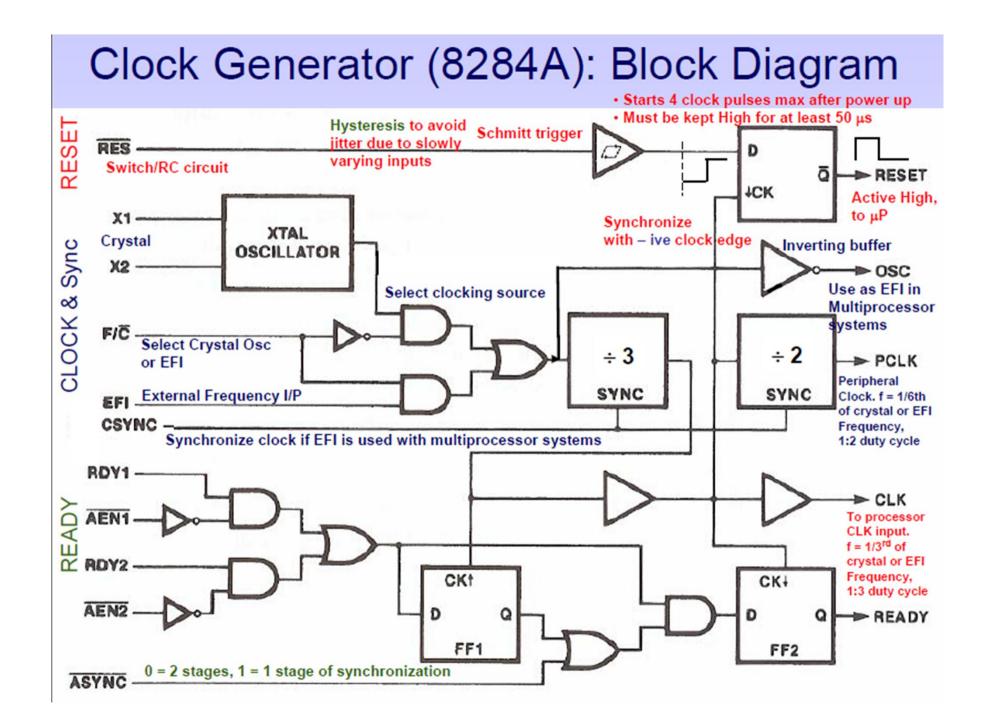
Queue status bits show the status of the internal instruction queue.

QS ₁	QS ₀	Function
0	0	Queue is idle
0	1	First byte of opcode
1	0	Queue is empty
1	1	Subsequent byte of opcode

Clock Generator(8284A)

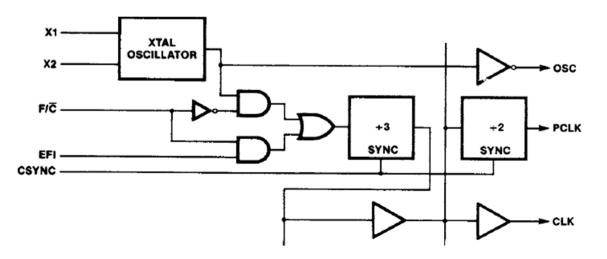
- 8284A: Provides following things for 8086/8088 microprocessors
 - clock generation
 - RESET synchronization
 - READY synchronization
 - and TTL-level peripheral clock signal (PCLK)

8284A Pin Functions

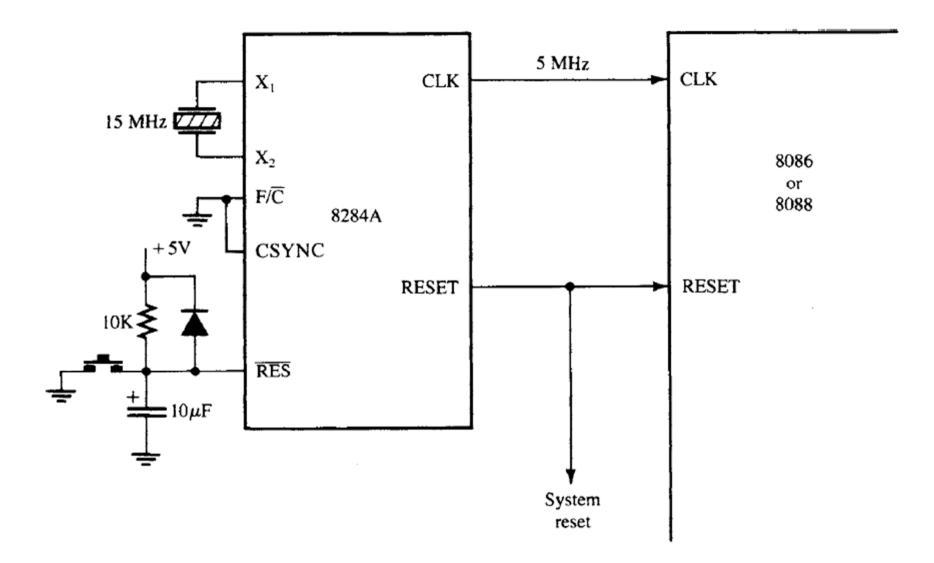

- AEN1', AEN2'(address enable) : to qualify bus ready signal RDY1, RDY2
- RDY1, RDY2(bus ready) : used in conjunction with AEN1', AEN2' pins, to cause wait states
- ASYNC'(ready synchronization): it selects either one or two stages of synchronization for RDY1, RDY2
- **READY**: output pin that connects to 8086/88 READY input
- X1, X2(crystal oscillator) :

connected to external crystal which is used as timing source for clock generator

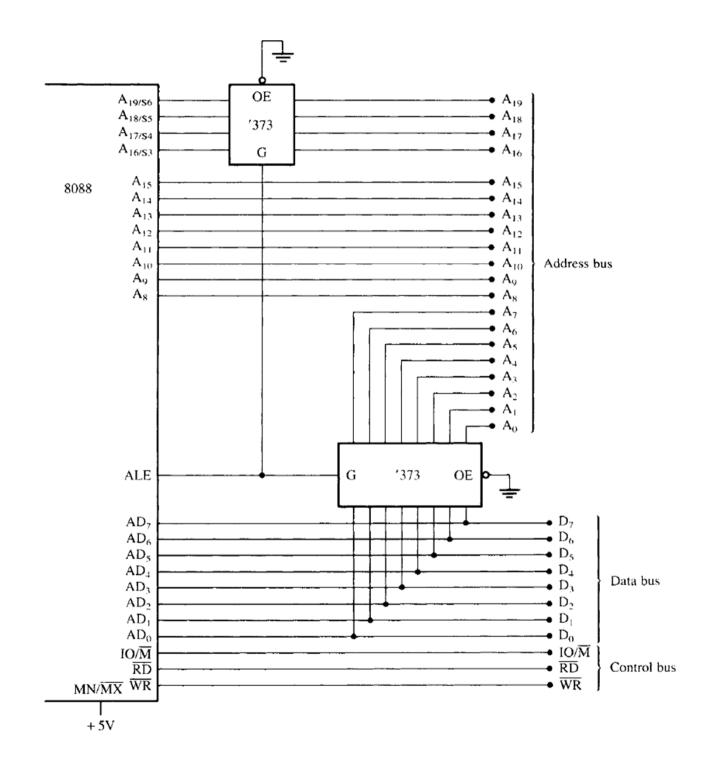
- F/C'(frequency/crystal) input : It choose clocking source according to following scheme.
 - F/C'=1 : chooses external clock connected at EFI pin,
 - F/C'=0 : chooses internal crystal oscillator


- EFI(external frequency input) : it supplies the timing whenever F/C pin is pulled high (i.e. F/C = 1)
- CLK(clock output) : CLK input to 8086/8088
 - Its 1/3 of crystal or EFI input frequency
 - It has 33% duty cycle which is required by 8086/8088
- PCLK(peripheral clock) : for peripherals
 - It is 1/6 of crystal or EFI input frequency, 50% duty cycle
- OSC(oscillator output) : This pin has same frequency as crystal or EFI input, it is used as EFI input for other 8284's in multiprocessor systems.
- **RES**'(reset input) : It is often connected to RC network that provide power-on resetting.

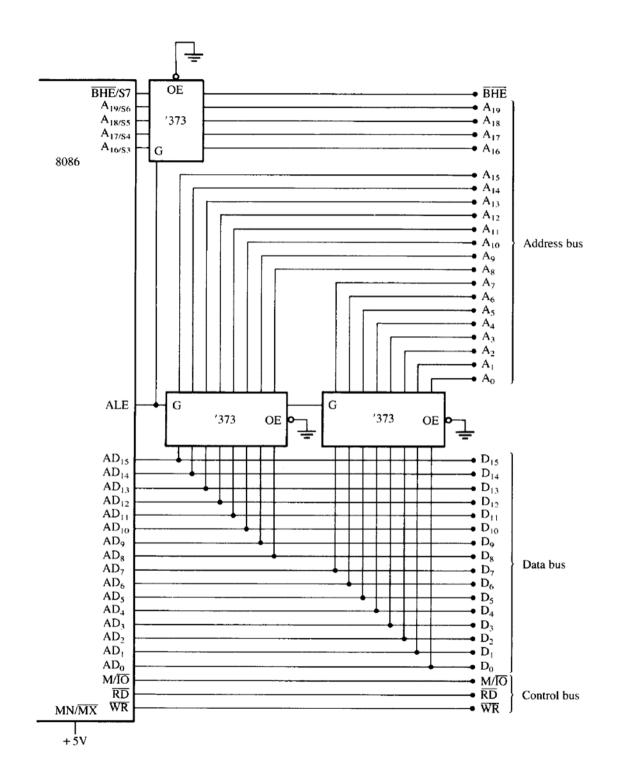
- **RESET** it is an output pin connected to 8086/8088 **RESET** input
- **CSYNC**(clock synchronization) :
 - It is used whenever EFI is used to get clock in multiprocessor systems. It provides synchronization.
 - It must be grounded, if internal crystal oscillator is used
- GND(ground) : connected to ground
- VCC(power supply) : $+5.0V \pm 10\%$


Operation of Clock Section

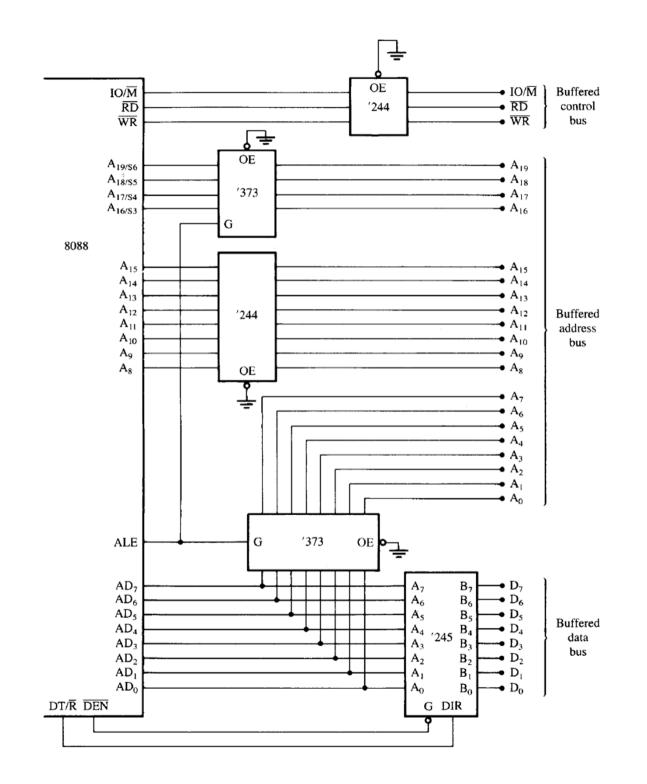
- when F/C' = 0: we use internal crystal oscillator
 - crystal is attached to X1, X2, oscillator generates square-wave signal at the same frequency as crystal
 - square-wave signal is fed to AND gate and inverter(OSC)
 - OSC output is sometimes used as EFI to other 8284A
- AND gate : it selects oscillator or EFI
 - F/C'=0 : oscillator output \rightarrow divide-by-3 counter
 - $F/C'=1 : EFI \rightarrow divide-by-3$ counter
- output of divide-by-3 counter
 - timing for ready synchronization
 - signal for another divide-by-2 counter which goes to PCLK
 - CLK signal : buffered before CLK output pin

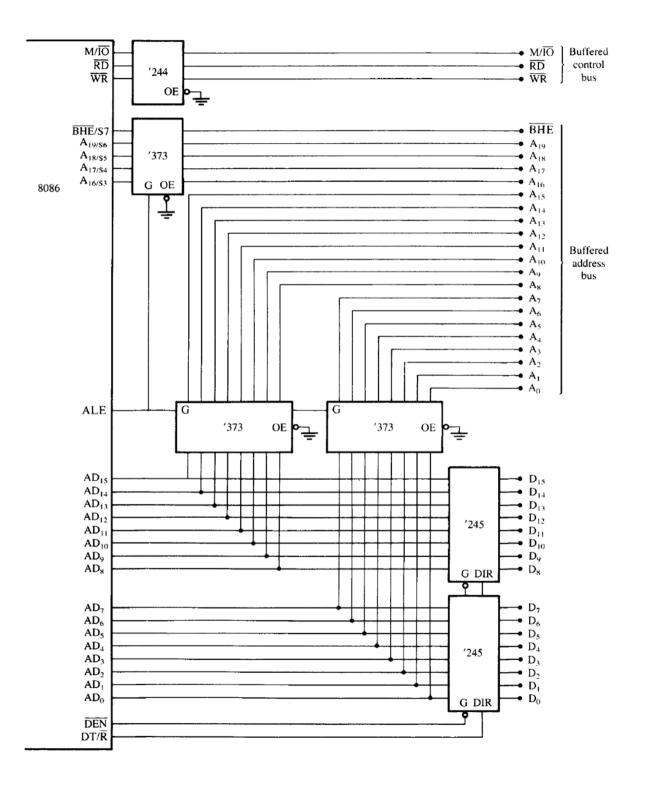

Operation of the Reset Section

- When we use crystal oscillator (i.e. F/C'=CSYNC=0)
 - then 15MHz crystal generates
 - 5MHz clock signal at CLK
 - 2.5MHz peripheral clock at **PCLK**
- Reset : contains a Schmitt trigger buffer and a D-type FF
 - D-type FF ensures timing requirements of 8086 RESET
 - it applies RESET signal to µProcessor on negative edge of clock
 - and 8086 µ Processor samples RESET at positive edge of clocks
- µ Processor RESET :
 - needs to become logic 1 no later than 4 clocks after power is applied, (FF make certain that RESET goes high in4 clock)
 - and to be held high for at least 50 μ s (RC time constant)


Bus Buffering and Latching

- Demultiplexing the Buses
 - address/data bus: multiplexed(shared) to reduce no of pins
 - memory and I/O : require that address remains valid and stable throughout a read and write cycle
- all computer systems : have three buses
 - address bus : provided memory and I/O with memory address or I/O port number
 - data bus : transferred data between μ and memory or I/O
 - control bus : provided control signal to memory and I/O
- Demultiplexing the 8088 : Fig.
 - two 74LS373 transparent latches :
 - pass inputs to outputs whenever ALE become 1
 - after ALE return 0, remember inputs at time of change to 0


Bus Buffering and Latching


- Demultiplexing the 8086 :
 - demultiplexing: AD15-AD0, A19/S6-A16/S3, BHE'/S3
 - 3 buses : address(A19-A0, BHE'), data(D15-D0), control(M/IO', RD',WR')
 - three 74LS373 transparent latches
- The Buffered System
 - $-\mu$ system must be buffered : if more than 10 unit load are attached to any bus pin
 - demultiplexed pins : already buffered by 74LS373 latch
 - buffer's output currents increased : 32mA of sink current(0), 5.2mA of source current(1)

Bus Buffering and Latching

- fully buffered signal will introduce **timing delay**
- It will cause no difficulty unless memory and I/O devices are used, which function at near maximum speed of bus
- The fully Buffered 8088 :
 - 8 address A15-A8 : 74LS244 octal buffer
 - IO/M', RD', WR': 74LS244
 - 8 data D7-D0 : 74LS245 octal bi-directional bus buffer
 - direction : controlled by DT/R', enable : by DEN'
- The fully Buffered 8086 :
 - data bus : two 74LS245
 - IO/M', RD', WR': 74LS244

